Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37707949

ABSTRACT

Application of classic liver-directed gene replacement strategies is limited in genetic diseases characterized by liver injury due to hepatocyte proliferation, resulting in decline of therapeutic transgene expression and potential genotoxic risk. Wilson disease (WD) is a life-threatening autosomal disorder of copper homeostasis caused by pathogenic variants in copper transporter ATP7B and characterized by toxic copper accumulation, resulting in severe liver and brain diseases. Genome editing holds promise for the treatment of WD; nevertheless, to rescue copper homeostasis, ATP7B function must be restored in at least 25% of the hepatocytes, which surpasses by far genome-editing correction rates. We applied a liver-directed, nuclease-free genome editing approach, based on adeno-associated viral vector-mediated (AAV-mediated) targeted integration of a promoterless mini-ATP7B cDNA into the albumin (Alb) locus. Administration of AAV-Alb-mini-ATP7B in 2 WD mouse models resulted in extensive liver repopulation by genome-edited hepatocytes holding a proliferative advantage over nonedited ones, and ameliorated liver injury and copper metabolism. Furthermore, combination of genome editing with a copper chelator, currently used for WD treatment, achieved greater disease improvement compared with chelation therapy alone. Nuclease-free genome editing provided therapeutic efficacy and may represent a safer and longer-lasting alternative to classic gene replacement strategies for WD.


Subject(s)
Hepatolenticular Degeneration , Mice , Animals , Hepatolenticular Degeneration/therapy , Hepatolenticular Degeneration/drug therapy , Copper/metabolism , Gene Editing , Hepatocytes/metabolism
2.
Mol Ther ; 31(9): 2651-2661, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37394797

ABSTRACT

Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.


Subject(s)
Liver Diseases , Transient Receptor Potential Channels , alpha 1-Antitrypsin , Animals , Humans , Mice , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Liver Diseases/metabolism , Lysosomes/metabolism , Mice, Transgenic , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
3.
Mol Ther Methods Clin Dev ; 26: 495-504, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36092366

ABSTRACT

Wilson disease (WD) is a genetic disorder of copper homeostasis, caused by deficiency of the copper transporter ATP7B. Gene therapy with recombinant adeno-associated vectors (AAV) holds promises for WD treatment. However, the full-length human ATP7B gene exceeds the limited AAV cargo capacity, hampering the applicability of AAV in this disease context. To overcome this limitation, we designed a dual AAV vector approach using split intein technology. Split inteins catalyze seamless ligation of two separate polypeptides in a highly specific manner. We selected a DnaE intein from Nostoc punctiforme (Npu) that recognizes a specific tripeptide in the human ATP7B coding sequence. We generated two AAVs expressing either the 5'-half of a codon-optimized human ATP7B cDNA followed by the N-terminal Npu DnaE intein or the C-terminal Npu DnaE intein followed by the 3'-half of ATP7B cDNA, under the control of a liver-specific promoter. Intravenous co-injection of the two vectors in wild-type and Atp7b -/- mice resulted in efficient reconstitution of full-length ATP7B protein in the liver. Moreover, Atp7b -/- mice treated with intein-ATP7B vectors were protected from liver damage and showed improvements in copper homeostasis. Taken together, these data demonstrate the efficacy of split intein technology to drive the reconstitution of full-length human ATP7B and to rescue copper-mediated liver damage in Atp7b -/- mice, paving the way to the development of a new gene therapy approach for WD.

4.
Hepatol Commun ; 6(12): 3597, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35903820
5.
Curr Opin Gastroenterol ; 38(2): 128-135, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35098934

ABSTRACT

PURPOSE OF REVIEW: Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) among others, have attracted a great deal of attention for their potential role as master regulators of gene expression and as therapeutic targets. This review focuses on recent advances on the role of ncRNAs in the pathogenesis, diagnosis and treatment of diseases of the cholangiocytes (i.e. cholangiopathies). RECENT FINDINGS: In the recent years, there has been an exponential growth in the knowledge on ncRNAs and their role in cholangiopathies, particularly cholangiocarcinoma. SUMMARY: Although several studies focused on miRNAs as noninvasive biomarkers for diagnosis and staging, several studies also highlighted their functions and provided new insights into disease mechanisms.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , MicroRNAs , RNA, Long Noncoding , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649241

ABSTRACT

α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.


Subject(s)
Forkhead Box Protein O3/metabolism , Liver Cirrhosis , MAP Kinase Kinase 4/metabolism , Up-Regulation , Animals , Disease Models, Animal , Forkhead Box Protein O3/genetics , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , MAP Kinase Kinase 4/genetics , Male , Mice , Mice, Knockout , MicroRNAs/biosynthesis , MicroRNAs/genetics , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism
7.
Expert Opin Biol Ther ; 21(2): 229-240, 2021 02.
Article in English | MEDLINE | ID: mdl-32880494

ABSTRACT

INTRODUCTION: Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED: In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION: Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.


Subject(s)
Genetic Vectors , Metabolism, Inborn Errors , Dependovirus/genetics , Genetic Therapy , Humans , Liver , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy
8.
J Biol Chem ; 295(38): 13213-13223, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32723872

ABSTRACT

α1-Antitrypsin (AAT) encoded by the SERPINA1 gene is an acute-phase protein synthesized in the liver and secreted into the circulation. Its primary role is to protect lung tissue by inhibiting neutrophil elastase. The Z allele of SERPINA1 encodes a mutant AAT, named ATZ, that changes the protein structure and leads to its misfolding and polymerization, which cause endoplasmic reticulum (ER) stress and liver disease through a gain-of-function toxic mechanism. Hepatic retention of ATZ results in deficiency of one of the most important circulating proteinase inhibitors and predisposes to early-onset emphysema through a loss-of-function mechanism. The pathogenetic mechanisms underlying the liver disease are not completely understood. C/EBP-homologous protein (CHOP), a transcription factor induced by ER stress, was found among the most up-regulated genes in livers of PiZ mice that express ATZ and in human livers of patients homozygous for the Z allele. Compared with controls, juvenile PiZ/Chop-/- mice showed reduced hepatic ATZ and a transcriptional response indicative of decreased ER stress by RNA-Seq analysis. Livers of PiZ/Chop-/- mice also showed reduced SERPINA1 mRNA levels. By chromatin immunoprecipitations and luciferase reporter-based transfection assays, CHOP was found to up-regulate SERPINA1 cooperating with c-JUN, which was previously shown to up-regulate SERPINA1, thus aggravating hepatic accumulation of ATZ. Increased CHOP levels were detected in diseased livers of children homozygous for the Z allele. In summary, CHOP and c-JUN up-regulate SERPINA1 transcription and play an important role in hepatic disease by increasing the burden of proteotoxic ATZ, particularly in the pediatric population.


Subject(s)
Liver Diseases/metabolism , Liver/metabolism , Mutation , Protein Aggregation, Pathological/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor CHOP/metabolism , alpha 1-Antitrypsin/biosynthesis , Alleles , Animals , Endoplasmic Reticulum Stress/genetics , Humans , Liver/pathology , Liver Diseases/genetics , Liver Diseases/pathology , Mice , Mice, Knockout , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Folding , Proto-Oncogene Proteins c-jun/genetics , Transcription Factor CHOP/genetics , Transcription, Genetic , Up-Regulation , alpha 1-Antitrypsin/genetics
9.
Mol Genet Metab Rep ; 21: 100504, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31516831

ABSTRACT

Geleophysic dysplasia (GPHYSD1, MIM231050; GPHYSD2, MIM614185; GPHYSD3, MIM617809) is an autosomal disorder characterized by short-limb dwarfism, brachydactyly, cardiac valvular disease, and laryngotracheal stenosis. Mutations in ADAMTSL2, FBN1, and LTBP3 genes are responsible for this condition. We found that three previously described cases of GPHYSD diagnosed clinically were homozygote or compound heterozygotes for five ADAMTSL2 variants, four of which not being previously reported. By electron microscopy, skin fibroblasts available in one case homozygote for an ADAMTSL2 variant showed a defective intracellular localization of mutant ADAMTSL2 protein that did not accumulate within lysosome-like intra-cytoplasmic inclusions. Moreover, this mutant ADAMTSL2 protein was less secreted in medium and resulted in increased SMAD2 phosphorylation in transfected HEK293 cells.

10.
Mol Genet Genomic Med ; 7(9): e844, 2019 09.
Article in English | MEDLINE | ID: mdl-31350823

ABSTRACT

BACKGROUND: Geleophysic dysplasia (GPHYSD) is a disorder characterized by dysmorphic features, stiff joints and cardiac involvement due to defects of TGF-ß signaling. GPHYSD can be caused by mutations in FBN1, ADAMTLS2, and LTBP3 genes. METHODS AND RESULTS: Consistent with previous reports, we found intracellular inclusions of unknown material by electron microscopy (EM) in skin fibroblasts of two GPHYSD individuals carrying FBN1 mutations. Moreover, we found that the storage material is enclosed within lysosomes and is associated with the upregulation of several lysosomal genes. Treatment of GPHYSD fibroblasts carrying FBN1 mutations with the angiotensin II receptor type 1 inhibitor losartan that inhibits TGF-ß signaling did not reduce the storage but improved the extracellular deposition of fibrillin-1 microfibrils. CONCLUSION: Losartan is a promising candidate drug for treatment of GPHYSD due to FBN1 defects.


Subject(s)
Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/metabolism , Fibrillin-1/genetics , Fibroblasts/metabolism , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/metabolism , Losartan/pharmacology , Lysosomes/metabolism , Microfibrils/metabolism , Skin/metabolism , Skin/pathology , Adolescent , Bone Diseases, Developmental/pathology , Child , Child, Preschool , Extracellular Matrix , Female , Fibroblasts/ultrastructure , Humans , Infant , Limb Deformities, Congenital/pathology , Male , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
11.
Hepatology ; 66(1): 124-135, 2017 07.
Article in English | MEDLINE | ID: mdl-28295475

ABSTRACT

α1 -Antitrypsin (AAT) deficiency is one of the most common genetic disorders and the liver disease due to the Z mutant of AAT (ATZ) is a prototype of conformational disorder due to protein misfolding with consequent aberrant intermolecular protein aggregation. In the present study, we found that livers of PiZ transgenic mice expressing human ATZ have altered expression of a network of hepatocyte transcriptional factors, including hepatocyte nuclear factor-4α, that is early down-regulated and induces a transcriptional repression of ATZ expression. Reduced hepatocyte nuclear factor-4α was associated with activation of ß-catenin, which regulates liver zonation. Livers of PiZ mice and human patients with AAT deficiency were both found to have a severe perturbation of liver zonation. Functionally, PiZ mice showed a severe defect of ureagenesis, as shown by increased baseline ammonia, and reduced urea production and survival after an ammonia challenge. Down-regulation of hepatocyte nuclear factor-4α expression and defective zonation in livers have not been recognized so far as features of the liver disease caused by ATZ and are likely involved in metabolic disturbances and in the increased risk of hepatocellular carcinoma in patients with AAT deficiency. CONCLUSION: The findings of this study are consistent with the concept that abnormal AAT protein conformation and intrahepatic accumulation have broad effects on metabolic liver functions. (Hepatology 2017;66:124-135).


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 4/genetics , Liver Neoplasms/pathology , alpha 1-Antitrypsin Deficiency/genetics , Aging/genetics , Analysis of Variance , Animals , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Down-Regulation , Humans , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Random Allocation , Statistics, Nonparametric , alpha 1-Antitrypsin Deficiency/pathology
12.
Hum Mol Genet ; 26(1): 33-43, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28013292

ABSTRACT

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.


Subject(s)
Cardiomyopathies/pathology , Gastritis, Hypertrophic/pathology , Mutation, Missense/genetics , Receptors, Notch/metabolism , Stomach Diseases/pathology , Ubiquitin-Protein Ligases/genetics , Ventricular Dysfunction, Left/pathology , Animals , Animals, Newborn , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Case-Control Studies , Cells, Cultured , Exome/genetics , Female , Gastritis, Hypertrophic/etiology , Gastritis, Hypertrophic/metabolism , Gene Expression Regulation , Humans , Male , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pedigree , Phenotype , Rats , Receptors, Notch/genetics , Signal Transduction , Stomach Diseases/etiology , Stomach Diseases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism
13.
Hum Gene Ther ; 26(4): 186-92, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25830689

ABSTRACT

Gene therapy is entering the stage of initial clinical development to treat a growing number of inherited metabolic diseases. This review outlines the development of liver-directed gene therapy for diseases caused by deficiencies of enzymes that are primarily expressed in the liver and discusses the disorders that appear most promising for clinical translation.


Subject(s)
Genetic Therapy , Liver Diseases/therapy , Metabolic Diseases/therapy , Animals , Clinical Trials as Topic , Genetic Vectors , Humans , Liver Diseases/genetics , Metabolic Diseases/genetics
14.
Dev Cell ; 29(6): 686-700, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24909901

ABSTRACT

Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease.


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Copper/metabolism , Exocytosis/physiology , Golgi Apparatus/metabolism , Homeostasis/physiology , Lysosomes/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Bile/metabolism , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/genetics , Cells, Cultured , Copper-Transporting ATPases , Dynactin Complex , Fluorescent Antibody Technique , HeLa Cells , Hep G2 Cells , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Mutation/genetics , Protein Transport , RNA, Small Interfering/genetics
15.
Eur J Hum Genet ; 22(8): 988-94, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24398790

ABSTRACT

Myhre syndrome (MS, MIM 139210) is a connective tissue disorder that presents with short stature, short hands and feet, facial dysmorphic features, muscle hypertrophy, thickened skin, and deafness. Recurrent missense mutations in SMAD4 encoding for a transducer mediating transforming growth factor ß (TGF-ß) signaling are responsible for MS. We found that MS fibroblasts showed increased SMAD4 protein levels, impaired matrix deposition, and altered expression of genes encoding matrix metalloproteinases and related inhibitors. Increased TGF-ß signaling and progression of aortic root dilation in Marfan syndrome can be prevented by the antihypertensive drug losartan, a TGF-ß antagonists and angiotensin-II type 1 receptor blocker. Herein, we showed that losartan normalizes metalloproteinase and related inhibitor transcript levels and corrects the extracellular matrix deposition defect in fibroblasts from MS patients. The results of this study may pave the way toward therapeutic applications of losartan in MS.


Subject(s)
Cryptorchidism/genetics , Cryptorchidism/metabolism , Extracellular Matrix/metabolism , Growth Disorders/genetics , Growth Disorders/metabolism , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/metabolism , Hypertrophy/genetics , Hypertrophy/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Joint Diseases/genetics , Joint Diseases/metabolism , Losartan/pharmacology , Mutation , Smad4 Protein/genetics , Adolescent , Adult , Child , Facies , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Metalloendopeptidases/metabolism , Microfibrils/metabolism , Phosphorylation , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad4 Protein/metabolism , Transforming Growth Factor beta/metabolism , Young Adult
16.
Mol Genet Genomic Med ; 2(6): 467-71, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25614868

ABSTRACT

Terminal osseous dysplasia with pigmentary defects (TODPD) is an X-linked dominant syndrome with distal limb anomalies, pigmentary skin defects, digital fibromas, and generalized bone involvement due to a recurrent mutation in the filamin A (FLNA) gene. We here report the mutation c.5217G>A in FLNA in three families with TODPD and we found possible germline and somatic mosaicism in two out of the three families. The occurrence of somatic and germline mosaicism for TODPD indicates that caution should be taken in counseling recurrence risks for these conditions upon presentation of an isolated case.

17.
Biomedicines ; 2(2): 132-148, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-28548064

ABSTRACT

Helper-dependent adenoviral (HDAd) vectors that are devoid of all viral coding sequences are promising non-integrating vectors for gene therapy because they efficiently transduce a variety of cell types in vivo, have a large cloning capacity, and drive long-term transgene expression without chronic toxicity. The main obstacle preventing clinical applications of HDAd vectors is the host innate inflammatory response against the vector capsid proteins that occurs shortly after intravascular vector administration and result in acute toxicity, the severity of which is dose dependent. Intense efforts have been focused on elucidating adenoviral vector-host interactions and the factors involved in the acute toxicity. This review focuses on the recent acquisition of data on such interactions and on strategies investigated to improve the therapeutic index of HDAd vectors.

18.
Hum Gene Ther Methods ; 24(5): 321-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23947957

ABSTRACT

Crigler-Najjar syndrome type I is caused by mutations of the uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) gene resulting in life-threatening increase of serum bilirubin. Life-long correction of hyperbilirubinemia was previously shown with intravenous injection of high doses of a helper-dependent adenoviral (HDAd) vector expressing UGT1A1 in the Gunn rat, the animal model of Crigler-Najjar syndrome. However, such high vector doses can activate an acute and potentially lethal inflammatory response with elevated serum interleukin-6 (IL-6). To overcome this obstacle, we investigated safety and efficacy of direct injections of low HDAd doses delivered directly into the liver parenchyma of Gunn rats. Direct hepatic injections performed by either laparotomy or ultrasound-guided percutaneous injections were compared with the same doses given by intravenous injections. A greater reduction of hyperbilirubinemia and increased conjugated bilirubin in bile were achieved with 1 × 10(11) vp/kg by direct liver injections compared with intravenous injections. In sharp contrast to intravenous injections, direct hepatic injections neither raised serum IL-6 nor resulted in thrombocytopenia. In conclusion, ultrasound-guided percutaneous injection of HDAd vectors into liver parenchyma resulted in improved hepatocyte transduction and reduced toxicity compared with systemic injections and is clinically attractive for liver-directed gene therapy of Crigler-Najjar syndrome.


Subject(s)
Adenoviridae/genetics , Crigler-Najjar Syndrome/therapy , Genetic Therapy , Genetic Vectors/administration & dosage , Glucuronosyltransferase/genetics , Animals , Genetic Vectors/toxicity , Glucuronosyltransferase/metabolism , Helper Viruses/genetics , Humans , Injections/methods , Liver/diagnostic imaging , Rats , Rats, Gunn , Treatment Outcome , Ultrasonography
19.
EMBO Mol Med ; 5(3): 397-412, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23381957

ABSTRACT

Alpha-1-anti-trypsin deficiency is the most common genetic cause of liver disease in children and liver transplantation is currently the only available treatment. Enhancement of liver autophagy increases degradation of mutant, hepatotoxic alpha-1-anti-trypsin (ATZ). We investigated the therapeutic potential of liver-directed gene transfer of transcription factor EB (TFEB), a master gene that regulates lysosomal function and autophagy, in PiZ transgenic mice, recapitulating the human hepatic disease. Hepatocyte TFEB gene transfer resulted in dramatic reduction of hepatic ATZ, liver apoptosis and fibrosis, which are key features of alpha-1-anti-trypsin deficiency. Correction of the liver phenotype resulted from increased ATZ polymer degradation mediated by enhancement of autophagy flux and reduced ATZ monomer by decreased hepatic NFκB activation and IL-6 that drives ATZ gene expression. In conclusion, TFEB gene transfer is a novel strategy for treatment of liver disease of alpha-1-anti-trypsin deficiency. This study may pave the way towards applications of TFEB gene transfer for treatment of a wide spectrum of human disorders due to intracellular accumulation of toxic proteins.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gene Transfer Techniques , Genetic Therapy/methods , Liver Cirrhosis/therapy , Liver/enzymology , alpha 1-Antitrypsin Deficiency/therapy , alpha 1-Antitrypsin/metabolism , Animals , Apoptosis , Autophagy/genetics , Autophagy-Related Protein 7 , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Disease Models, Animal , Genetic Predisposition to Disease , HeLa Cells , Humans , Interleukin-6/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Mutation, Missense , NF-kappa B/metabolism , Papio , Phenotype , Time Factors , Transfection , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism
20.
Mol Ther ; 21(4): 767-74, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23358188

ABSTRACT

Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes with no chronic toxicity. However, a toxic acute response with potentially lethal consequences has hindered their clinical applications. Liver sinusoidal endothelial cells (LSECs) and Kupffer cells are major barriers to efficient hepatocyte transduction. Understanding the mechanisms of adenoviral vector uptake by non-parenchymal cells may allow the development of strategies aimed at overcoming these important barriers and to achieve preferential hepatocyte gene transfer with reduced toxicity. Scavenger receptors on Kupffer cells bind adenoviral particles and remove them from the circulation, thus preventing hepatocyte transduction. In the present study, we show that HDAd particles interact in vitro and in vivo with scavenger receptor-A (SR-A) and with scavenger receptor expressed on endothelial cells-I (SREC-I) and we exploited this knowledge to increase the efficiency of hepatocyte transduction by HDAd vectors in vivo through blocking of SR-A and SREC-I with specific fragments antigen-binding (Fabs).


Subject(s)
Adenoviridae/genetics , Asialoglycoprotein Receptor/genetics , Genetic Vectors/genetics , Receptors, Immunologic/genetics , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class F/genetics , Animals , Cell Line , Fluorescent Antibody Technique , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...